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ABSTRACT
Epidemiologic and phenotypic evidences indicate that breast
and prostate cancers have high pathological similarities. Anal-
ysis of pathological similarities between cancers can be ben-
eficial in several aspects such as enabling the knowledge
transfer between the cancer studies. To gain knowledge of
the similarity between breast and prostate cancer pathology,
common genes that are affected by the two carcinomas are
investigated. Gene expression data extracted from RNA-seq
experiments, provided through TCGA consortium, are used
for gene selection. Gene selection was performed using an
iterative SVM based ensemble feature selection approach.
Iterative SVM-based gene selection methods enable corre-
lated gene expressions to be considered simultaneously and
ensemble approach stabilizes the selection. As results of the
analysis, two genes, Transglutaminase 4 (TGM4) and com-
plement component 4A (C4A), were selected as commonly
altered genes. Direct relationships of the two genes to the
two cancers are not confirmed. However, TGM4 is known to
be associated with adenocarcinomas and C4A with ovarian
cancer. Thus provides evidence that they are pathologically
important genes for the two cancers.
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1. INTRODUCTION
Many studies provide evidences that there are epidemi-

ologic and phenotypic similarities between the breast inva-
sive carcinoma (breast cancer) and prostate adenocarcinoma
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(prostate cancer) as extensively review by C. López-Ot́ın
and E. P. Diamandis [6].

Rates of incidences for breast and prostate cancer are
parallel in various regions. That is, studies as early as
1990’s show that breast and prostate cancer have high co-
occurrence rate in various countries [2]. Also, breast and
prostate cancer are both strongly influence by steroids. More-
over, removal of the gonadal reduces the risk and anti-estrogen
are shown to be beneficial and possible preventive of the
cancer [8]. Also, similar dietary pattern, such as fat con-
sumption, also influence both cancer.

To investigate the similarities of breast and prostate can-
cer in a genomics perspective, we examine the genes that
distinguish cancer samples from normal samples based on
gene expression patterns. One of the methods for selection
of these genes is application of feature selection [3]. The
aim of feature selections in classification problems is to find
a small set of features prior to classification with the end
goals to best discriminate the difference between the dis-
eased and the control samples. In an iterative feature se-
lection approach, feature selection and classification is done
alternatingly with a defined feature selection cost function.
The cost function can be defined independently or depen-
dently to the classification results. With an iterative feature
selection approach, influenced genes can be selected for each
cancer types that also provide low classification errors. Also,
the resulting analysis of the common genes between the two
cancer types will provide information on the similarity of
their pathology.

There are two major technologies for measuring gene ex-
pression levels: DNA microarray and RNA-seq. The ma-
jor difference between the two experiments are whether the
gene expression levels are measured after hybridization to
microarray chips or genes are sequenced after pulling out
expressed genes from a sample. DNA microarray has been
extensively used in the past years and is still being used due
to low cost. However, RNA-seq is considered to be inher-
ently better since genes with mutations or variations can
be detected without any prior knowledge of the sequence
pattern [7].

We use RNA-seq results as gene expression data and SVM-
based iterative feature selection algorithm. The algorithm
is combined with ensemble approach to identify genes that
are common to breast and prostate cancer. Ensemble ap-
proaches were shown to increase the stability and robust-
ness of gene selection in the microarray data analysis [4, 1].
Details of the gene selection pipeline are provided in the
Methods section.
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2. METHODS

2.1 Data Set
Gene expression information for breast invasive carcinoma

(BRCA) and prostate adenocarcinoma (PRAD) was acquired
from The Cancer Genome Atlas (TCGA) data repository
(https://tcga-data.nci.nih.gov/tcga/). For each of the BRCA
and PRAD dataset, level 3 gene expression data extracted
from RNA-seq experiments of solid tumor (TCGA sample
type code 01) and solid tissue normal (TCGA sample type
code 11) are used. BRCA dataset consists of 370 samples
out of which 316 are cancer samples and 54 are normal sam-
ples. PRAD dataset consists of 218 samples out of which
175 are cancer samples and 43 are normal samples.

Both BRCA dataset and PRAD dataset have imbalanced
number of cancer and normal samples. SVM is affected less
by the “imbalanced data problem” compared to classifica-
tion algorithms such as K-nearest neighbour. However, in
the current run of linear SVM on the imbalanced datasets,
biased selection towards the cancer samples occurred for
the BRCA dataset. To reduce the bias and stabilize the
gene selection, ensemble of classification on subsets of can-
cer samples is used. That is, first, the cancer and the normal
samples are divided into testing sets and training sets. The
training sets of the cancer samples are further divided to five
equal numbers of subsets. Each one of the subsets is used as
a sub-training set or as a validation set. Normal samples are
divided to five subsets, four sub-training sets and a valida-
tion set. Five separate runs of SVM were performed with a
subset of cancer samples and four subsets of normal samples.
The final genes selected are the genes that are consistently
present in the five selections. The numbers of samples are
shown in the table 1.

Table 1: Data Samples
BRCA PRAD

Cancer Normal Cancer Normal

Training
sub-train

52×5 8×5 26×5 6×5
validation

Testing 56 14 45 13
Total 316 54 175 43

2.2 Gene-Set Selection Pipeline

2.2.1 Classification with Linear SVM
Linear support vector machine (SVM) is used to learn the

weights of genes. One of the strength of SVM is its capa-
bility of handling non-linear decision boundaries. However,
current datasets have small number of samples compared
to the number of features, which makes it difficult to ex-
ploit their non-linear characteristics. Thus, we choose to ex-
ploit only the maximum margin separation characteristics
of SVM.

Linear discriminant function, f(x), is calculated as the
weighted sum of feature values of x with additive bias, b.

f(x) = w · x+ b

where w =
∑

n αnynxn and b = 1
Ns

∑
n∈s(yn−w ·xn) with

s being the index of samples with non-zero αs and Ns being
the sum of those samples.

Linear SVM trains the weight vector, w, of the linear
discriminant function, f(x), by maximizing the margin be-
tween the boundary and support vectors on the training set
X = [x1, . . . ,xn]. For l2-norm soft margin classification,
the optimization problem for learning the weights are as fol-
lows:

minimize 1
2
‖w‖2 + C

∑N
n=1 ξn

subjected to tnf(xn) ≥ 1− ξn

ξn ≥ 0

The variable ξ is the slack variable for transforming the in-
equality constraint to an equality form. The constant C is
the value associated with the strength of relaxation. The
value of C is often selected by cross validation. However,
in this experiment, C had little or no effect on the perfor-
mance of classification. Thus, default value of C = 100 is
used. Several implementations of SVM are publicly avail-
able. Among them, Kernlab [5], which is an R extension
package, is used for SVM training and testing.

2.2.2 Feature Ranking
The rank of a gene can be evaluated by the change in

the cost function caused by setting the weight of the given
feature to zero. The cost function of a linear SVM can be
simplified to J = 1

2
‖w‖2, which is the soft margin optimiza-

tion function with the slack variable term dropped. Slack
variable term depends on the sample and does not reflect
the effect of the features in the classification. The minimiza-
tion of ‖w‖2 is equivalent to finding set of features with w2

i ,
which justifies the uses of w2

i as the ranking criterion [3].

2.2.3 Iterative Gene Set Selection with Recursive Fea-
ture Ranking

Gene selection procedure is adopted from Recursive Fea-
ture Elimination (RFE) method introduced by Guyon et al.
[3]. The original RFE algorithm is modified by integrating
a section-wise removal procedure. In each iteration of the
linear SVM-RFE, one or more features, i.e. genes, are re-
moved and weights are retrained. The output of the linear
SVM-RFE is gene set ranked list r that contains the list of
genes or gene sets that have been removed in each iteration.
With this information, gene subset ranking G0 ⊂ G1 ⊂ . . . ⊂
Gk, where G0 contains all genes and Gk contains one gene,
can be generated. Then remaining genes are retrained on
sub-training set and are used to measure the accuracy of
classification on a validation set.

2.2.4 Ensemble Gene Set Selection
After the generation of gene subset ranking for each of

the five sub-training samples, final gene set is selected with
ensemble feature selection approach. There are various types
of ensemble based feature selection methods [9]. However,
due to the limitation in the number of available samples, we
take a simple approach of voting. That is, first, find the
gene-set-size threshold by selecting a gene subset that has
the lowest stable type I error (false positive rate: FPR) and
type II error (false negative rate: FNR) evaluated with the
gene subset ranking of all five trained sets on the validation
sets. After the gene-set-size threshold has been selected,
gene subset of selected size is extracted for each of the five
trained sets: GT1, GT2 . . . GT5. Genes in the five sets, g
∈ {GE1 ∪ GE2 ∪ . . . ∪ GE5}, are voted by the number of
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occurrence in the selected sets. New ensemble gene subsets
are generated by grouping the genes by the number of votes
v: Ev=5, Ev≥4, Ev≥3, Ev≥2, and Ev≥1. Theses ensemble
gene subsets are retrained with randomly selected cancer
training samples and normal training sample of equal sizes
(BRCA: 40/40 and PRAD: 30/30).

3. RESULT
Selection of gene sets that best discriminates the cancer

sample from normal samples by the gene expression patterns
is performed. Three groups of samples are used for the selec-
tion: BRCA and PRAD. We will first look at performance
measures of intermediate and final results. Then analysis
result of the common genes in BRCA, and PRAD will be
discussed.

3.1 Performance Measures
To validate whether the selected genes play a part in ex-

plaining the breast and/or prostate cancer pathology, false
positive rate (FPR), false negative rate (FNR), and accu-
racy of classification results are evaluated. For convenience,
cancer tissues are considered to be positives data and normal
tissues negative data.

3.1.1 Linear SVM-RFE
False positive rate (FPR), false negative rate (FNR), and

accuracy of five sub-training results evaluated on the sub-
training validation sets (Table 1) are plotted for each of the
iteration steps. Figure 1 shows FPRs and FNRs for BRCA
and PRAD. The x-axis is the number of remaining gene
sets after removing selected number of genes in the iterative
gene selection procedure. The gene set starts off with all
the genes and decrease till only one gene remain in a set.
The FPR/FNR patterns of BRCA and PRAD are drastically
different. In PRAD dataset (Fig. 1B), FPR and FNR start

around 0.1 and reduces gradually till gene set size of 1800.
Then they become unstable as the gene set size reduces. In
BRCA dataset (Fig. 1A), FPR and FNR start around 0.2
and 0.5, increases up to a certain point, and then decreases
till a single gene is left.

Figure 1: False positive rate and false negative rate
of five trained weights on five validation sets. A.
BRCA. B. PRAD.

Accuracy plots in Figure 2 also shows similar trends. To
find the threshold for determining the gene-set-size for BRCA

and PRAD datasets, stabilizing accuracy region with the
highest accuracy just before or near peak in the accuracy
values were determined and used. We selected gene set size
of 135 for the breast cancer and 122 for the prostate cancer.
The selected region is shown as gray vertical line in Figures
1 and 2.

135

122

Figure 2: Accuracy measure of five trained weights
on five validation sets. A. BRCA. B. PRAD.

3.1.2 Selected Gene Subsets
Using the gene-set-size of 135 for the breast cancer and

122 for the prostate cancer, five gene sets, GT1, GT2, . . . ,
GT5, are selected for each of BRCA and PRAD data sets.
Weights of the selected gene sets are retrained on a random
sample of balanced training set. The retrained weights are
used to evaluate the performance on the reserved test sets
for BRCA and PRAD separately. The Table 2 summarized
the performance measures for the five groups.

Table 2: Performance measures of gene subset of
selected size

BRCA PRAD
FPR FNR Acc FPR FNR Acc

GT1 0.57 0.00 0.89 0.08 0.11 0.90
GT2 0.57 0.00 0.89 0.08 0.09 0.91
GT3 0.57 0.02 0.87 0.08 0.07 0.93
GT4 0.50 0.00 0.90 0.08 0.16 0.86
GT5 0.64 0.00 0.87 0.15 0.11 0.88

Min 0.50 0.00 0.87 0.08 0.07 0.86
Max 0.64 0.02 0.90 0.15 0.16 0.93

3.1.3 Ensemble Gene Sets
Ensemble gene sets, Ev=5, Ev≥4, Ev≥3, Ev≥2, are gen-

erated by voting. The vote value of each gene, v, are the
number of occurrence of the gene in the selected gene sets,
GT1, GT2, . . . , GT5. Table 3 shows average performance of
weights trained on three separate training sets and evalu-
ated on the reserved testing sets. Goodness of the ensemble
methods can be evaluated by comparing the performance
of the original selected gene sets, GT1, GT2, . . . , GT5. For
BRCA dataset, classification using 10 genes that occurred
in all GT1, GT2, . . . , GT5, i.e., Ev=5, has the best accuracy.
BRCA ensemble set Ev≥3 has equal to the maximum accu-
racy of the original selected gene sets. PRAC ensemble gene
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sets, except for Ev=5, have the accuracy that is equal to or
better than any of the ordinal selected gene sets. In the fol-
lowing sections, we will discuss the results using ensemble
set Ev≥3, which BRCA and PRAC showed equal to maxi-
mum accuracy of original set, and Ev≥2, which have similar
size of gene set as the original sets.

Table 3: Performance measures of ensemble gene
subsets

BRCA PRAD
size FPR FNR Acc size FPR FNR Acc

Ev=5 10 0.43 0.00 0.91 26 0.08 0.10 0.91
Ev≥4 10 0.43 0.00 0.91 62 0.08 0.07 0.93
Ev≥3 52 0.43 0.01 0.90 104 0.08 0.07 0.93
Ev≥2 129 0.55 0.02 0.87 162 0.05 0.06 0.94
Ev≥1 487 0.55 0.04 0.86 260 0.03 0.07 0.94

Min - 0.43 0.00 0.86 - 0.0 0.06 0.91
Max - 0.55 0.04 0.91 - 0.08 0.08 0.94

3.2 Common Genes Analysis
Major objective of current work is in the analysis of com-

mon genes that are active discriminators of both breast can-
cer and prostate cancer. Unlike initial expectation of find-
ing significant number of common genes, only two common
genes are present in the Ev≥2 set and nine in the Ev≥1 set.

Although only two genes are found that show significantly
common expression between breast cancer and prostate can-
cer, pathway similarity can provide addition information in
many cases. For this, we search the Ingenuity Pathway Anal-
ysis (IPA) database (Ingenuity Systems, www.ingenuity.com)
to find functional information of the two genes: C4A and
TGM4. C4A is known to be a part of acute phase response
signaling, which is associated with rapid inflammatory re-
sponse for protection against microorganisms. It is also
known to be part of LXR/RXR activation, which is asso-
ciated with regulation of cholesterol, fatty acid, and glucose
homeostasis. Associations of TGM4 on any of the canonical
pathways are yet not known. This could be the characteris-
tics of the underlying biology or due to lack of information.
However, testosterone and dihydrotestosterone, which are
both sex steroids, have known association with breast can-
cer as well as prostate cancer. This is a strong indication the
TGM4 is also associated with breast and prostate cancer.

4. CONCLUSIONS
Current study was initiated with a hypothesis that simi-

larity of breast cancer and prostate cancer, which was strongly
suggested by the epidemiologic and phenotypic evidences,
can also be present in the gene expression pattern. Gene
expression extracted from RNA-seq experiment for breast
invasive carcinoma (BRCA) and prostate adenocarcinoma
(PRAD) retrieved from TCGA database was used to pro-
vide evidence of the hypothesis. Iterative SVM based en-
semble gene selection method was used to select genes that
discriminate cancer samples from normal samples. The en-
semble gene sets Ev≥3 were able to achieve accuracy of 90%
for BRCA and 93% for PRAD. However, only two genes
where common in the Ev≥3 of BRCA and Ev≥3 of PRAD
gene sets.

Of the two common genes, Transglutaminase 4, did not
have any directly known associations to the breast cancer

nor the prostate cancer. Complement component 4A also
did not have directly known association with breast cancer
nor the prostate cancer. However, possibilities of associa-
tion could be found through guilt by association in pathway
analysis. This indicates that they could be common genes
associated with various types of cancer. Although this in-
formation can be important in itself, further study needs to
be done to conclude that there are significant pathological
similarity in the genomic level exclusively for breast can-
cer and prostate cancer. As future work, similarity analysis
between various types of cancer using various genomic infor-
mation will be executed to extend the knowledge of cancer
pathology.
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