
Citation: Coelho, D.; Bhavya, G.;

Krishna, A.; Velez-Rojas, M.;

Greenspan, S.; Mankovski, S.; Mueller,

K.;. TaskFinder. Journal Not Specified

2024, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2024 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

TaskFinder: A Semantics-Based Methodology for
Visualization Task Recommendation
Darius Coelho 1,† , Bhavya Ghai 1, Arjun Krishna 1, Maria Velez-Rojas 2, Steve Greenspan 2, Serge Mankovski 2,
and Klaus Mueller 1,*

1 Department of Computer Science at Stony Brook University 1
2 CA Technologies (at the time of this work)
* Correspondence: dcoelho@cs.stonybrook.edu
† Current address: Stony Brook University, Stony Brook, NY 11790.

Abstract: Data visualization has entered the mainstream and numerous visualization recommender 1

systems have been proposed to assist visualization novices, as well as busy professionals, in selecting 2

the most appropriate type of chart for their data. Given a dataset and a set of user-defined analytical 3

tasks, these systems can make recommendations based on expert coded visualization design princi- 4

ples or empirical models. However, the need to identify the pertinent analytical tasks beforehand still 5

exists and often requires domain expertise. In this work we aim to automate this step with TaskFinder, 6

a prototype system that leverages the information available in textual documents to understand 7

domain-specific relations between attributes and tasks. TaskFinder employs word vectors as well 8

as a custom dependency parser along with an expert-defined list of task keywords to extract and 9

rank associations between tasks and attributes. It pairs these associations with a statistical analysis 10

of the dataset to filter out tasks irrelevant given the data. TaskFinder ultimately produces a ranked 11

list of attribute-task pairs. We show that the number of domain articles needed to converge to a 12

recommendation consensus is bounded for our approach. We demonstrate our TaskFinder over 13

multiple domains with varying article types and quantities. 14

Keywords: Visualization Recommendation; Natural Language Processing; Visualization Systems 15

and Tools 16

1. Introduction 17

The recent exponential increase in data generation activities has pushed data visu- 18

alization into the mainstream. However, many people lack the expertise or resources to 19

generate insightful data visualizations. To address this issue, researchers have proposed 20

various visualization recommender systems. These systems generally function by taking 21

a dataset as input, supplemented by any necessary additional input from the user, and 22

generating a ranked list of recommended visualizations as output. 23

The early visualization recommender systems [1,2] focused on suggesting a list of 24

visualizations based on design criteria such as effectiveness and expressiveness. Subsequent 25

iterations integrated statistical properties of the data into their recommendations. Later, 26

researchers demonstrated the influence of visualization types on a user’s task-based perfor- 27

mance [3]. This led to more recent systems requiring users to specify their intended low-level 28

analytic tasks [4] before receiving visualization suggestions [5]. While it is reasonable to 29

require users to select analytic tasks, their inexperience or the size and complexity of their 30

data may cause them to overlook important tasks. 31

In this work, we propose a methodology that leverages information within textual doc- 32

uments to determine the most relevant attributes in a tabular dataset and the corresponding 33

analytic tasks. While many recommender systems, especially in the visualization field, rely 34

on expert-crafted rule-based algorithms or models derived from empirical data, these might 35

not be optimal for suggesting visualization tasks. Attributes of interest and recommended 36

Version May 13, 2024 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0000-0000-000X
https://www.mdpi.com/journal/notspecified

Version May 13, 2024 submitted to Journal Not Specified 2 of 19

tasks can greatly vary across different data domains thus making it prohibitively expensive 37

to design rules or collect model training data through empirical studies. Instead, we show 38

that it is possible to use a previously untapped source of information - textual documents - 39

to serve this purpose. 40

People or organizations often post data-driven articles that explain, review, and make 41

comparisons on a variety of topics on the web. We conduct a preliminary investigation 42

that demonstrates such documents on the web do in fact report (directly or indirectly) the 43

analytic tasks they performed on various attributes to make their findings. Thus we believe 44

that extracting this information will allow us to drive a visualization task recommender 45

system. To this end, we develop a technique that leverages a combination of natural 46

language processing (NLP) techniques (e.g. Part-of-speech or POS tagging, dependency 47

parsing, semantic word embeddings) to automatically identify data attributes and analytic 48

tasks in natural language (NL) documents such as magazines and reviews. 49

To demonstrate the application of this extraction method to a visualization recom- 50

mender system, we introduce a prototype system called TaskFinder. Operating on a 51

user-provided tabular dataset and a set of relevant text documents, TaskFinder extracts at- 52

tributes and mentions of analytic task. Next, it determines the importance of data attributes 53

and associated analytic tasks based on textual frequency, order of appearance in documents, 54

and statistical analysis of the dataset. This information is then utilized to propose suitable 55

visualizations for investigating the data, ranked by importance. The recommended list of 56

visualizations is provided to the user via the interface shown in Figure 4. 57

We demonstrate TaskFinder across two distinct domains, showcasing how it deliv- 58

ers recommendations. We show that both the quantity and quality of texts impact the 59

recommendations, highlighting the significance of document selection. Additionally, we 60

reveal that as the quantity of texts grows, the recommendations tend to converge toward a 61

consensus. 62

In summary, our contributions are as follows: 63

• A preliminary study demonstrating the viability of leveraging web-based textual 64

information to associate visualization tasks with dataset attributes. 65

• A method that leverages NLP techniques to extract attribute importance and associated 66

analytical tasks from textual documents. 67

• A prototype system - TaskFinder - which implements a ranking method that combines 68

information gained from the NL attribute-task extraction method and the statistical 69

properties of a dataset to recommended visualizations. 70

• A demonstration of TaskFinder with two data domains. 71

• An evaluation showing that the number of documents needed to converge to a recom- 72

mendation consensus is bounded. 73

2. Related Work 74

2.1. Visualization Recommenders 75

Visualization recommender systems aim to lower the barrier for data analysts who 76

lack the expertise or time required to visually represent their data. In most cases, these 77

systems start off by asking users to specify the dimensions or data attributes they are 78

interested in and the task they wish to perform. Once this is determined a rule-based 79

or machine-learning approach is typically employed to filter and rank the appropriate 80

visualizations. 81

APT[1], a system developed by Mackinlay was one of the first attempts at building a 82

visualization recommender. It is a rule-based system that uses composition algebra and 83

design criteria based on works by Bertin [6] and Cleveland et al. [7] to suggest effective 84

graphical presentation designs. Later, the SAGE [2] and BOZ [3] systems built upon 85

APT, also considering the statistical properties of the data as well as the analytical tasks 86

a user wishes to perform. AutoBrief [8] and AutoVis [9] further extended these works by 87

supporting additional visualizations and statistical analyses. Most recently, SeeDB [10] 88

Version May 13, 2024 submitted to Journal Not Specified 3 of 19

provides recommendations of aggregate views using similar statistics while improving 89

computational performance. 90

The systems discussed above require users to specify data attributes and the analytical 91

task they wish to perform on them. However, some users may not have any tasks in mind; 92

this is typical of users inexperienced in data analysis. Mackinlay et al. sought to address 93

this issue with Tableau’s Show Me [11] interface commands. Show Me supports the user’s 94

search for visualizations by suggesting good defaults for the visualizations using heuristic 95

rules. Key et al. [12] also aimed to help users build task-appropriate dashboards with 96

VizDeck by letting them select visualizations from a ranked list of visualization thumbnails. 97

VizDeck uses the statistical properties and user voting to learn a scoring function that 98

is used to rank visualizations. More recently the interactive systems Voyager [13] and 99

Voyager2 [14] allow users to navigate a gallery of recommended visualizations. A unique 100

feature of their approach is that as the user selects visualizations or attributes the gallery 101

is updated. A recent effort is the work by Lee et al. [15] who offer analysts several paths, 102

such as enhance, generalize, and pivot by which they can transition from one visualization 103

to another. 104

Recently, multiple machine learning-based approaches have been proposed to recom- 105

mend visualizations. Saket et al. [5] evaluated the effectiveness of a set of visualizations 106

across ten visualization tasks put forth by Amar et al.[4]. The findings of this study were 107

then used to train a decision tree for a visualization recommender they called Kopol. Lou 108

et al. [16] also used data from an empirical study to train a decision tree that decides if 109

a visualization is good or bad and a learning-to-rank model to rank the visualizations. 110

The Draco [17] system models visualization design knowledge from empirical studies as 111

a collection of constraints, it also uses a learning-to-rank model to train its recommender 112

engine and easily allows its knowledge base to evolve with newer studies. Data2Vis [18] 113

is an end-to-end visualization generation system. Given a dataset, it provides a valid 114

Vega-Lite specification. It applies a neural machine translation (seq2seq) model that is 115

trained with a large number of datasets and their visualizations in Vega-Lite specification to 116

learn appropriate transformations (count, bins, mean) and common data selection patterns. 117

VisML [19] developed a recommendation strategy by learning the association between 118

dataset features and visualization properties. KG4Vis [20] uses a knowledge graph to 119

encode these associations which adds transparency to this process. Finally, MultiVision [21] 120

extends the recommendations to construct entire dashboards by adding a set of guidelines. 121

These systems are all able to predict the visualization type or how data should be visually 122

encoded however they do not predict visualization tasks. 123

These prior systems made significant strides toward visualization recommendation. 124

However, they still require some effort on the user’s part to determine attributes of interest 125

and the analytic tasks to be performed. Additionally, they do not explicitly consider the data 126

domain, which is a factor that can significantly affect the choice of task and visualization. 127

TaskFinder aims to augment these systems with a novel method that recommends attributes 128

and analytical tasks based on the specific domain of the data. 129

2.2. NLP in Visualization 130

Recently, NLP techniques have matured and are being applied in many domains. One 131

such technique that is widely applied in the field of visualization is word embeddings. 132

Word embeddings are vector representations of words in a high-dimensional geometric 133

space often referred to as vector space. Multiple models have been proposed to learn these 134

embeddings from a large corpus of text. These models use the context of a word, i.e. its 135

surrounding text, to map it to the vector space. Thus, words that share the same context 136

appear closer to each other in vector space and are said to be semantically similar or related. 137

Berger et al. [22] extended the Word2Vec embedding technique to embed both words and 138

documents in the vector space and then visualized this space to show the relationship 139

between documents and words. Park et al. [23] created ConceptVector, a visual analytics 140

system that helps users refine concepts generated from word embeddings and use these 141

Version May 13, 2024 submitted to Journal Not Specified 4 of 19

concepts to analyze documents. Mahmood et al. [24] used data analytics paired with 142

word embeddings of data attributes and their context to help users build taxonomies. Our 143

work employs word embeddings as well; we use them to determine if words in textual 144

documents refer to attributes and tasks. 145

In addition to using NLP techniques to analyze texts for visualization purposes, 146

researchers in the visualization field have recently been developing natural language inter- 147

faces (NLI) for visualization. Cox et al. [25] created one of the first NLIs for visualization. 148

They use a grammar-based approach to convert NL questions into database queries and 149

return the results to the user via tables and bar charts. Sun et al. [26] followed up on this 150

work with their Articulate system that considers various low-level analytical tasks and 151

returns a wider range of visualizations. DataTone [27] allows users to specify visualizations 152

through NL queries while detecting ambiguities in those queries using a combination of 153

lexical, constituency, and dependency parsing. Setlur et al. [?] developed Eviza which 154

implements a probabilistic grammar-based approach and a finite state machine to allow 155

people to interact with a given visualization using NL commands. Flowsense [28] employs 156

a semantic parser to parse NL queries that manipulate multi-view visualizations produced 157

by a dataflow diagram. The system allows users to expand and adjust dataflow diagrams 158

more conveniently. Most recently, Narechania et al. identified the popularity of NLI in 159

visualization and developed the NL4DV toolkit [29] to aid visualization developers who 160

may not have a background in NLP develop NLIs for visualization. 161

TaskFinder is closely related to these NLI. It attempts to extract attributes and associ- 162

ated task mentions from large amounts of text in articles or reviews. This is akin to the way 163

NLIs understand users’ NL queries However, the queries these NLI systems process are 164

more direct and tend to be less ambiguous. For example, users specifically ask the system 165

to "show the correlation between horsepower and MPG" which the system understands as 166

applying the correlation task to the horsepower and MPG data attributes. TaskFinder, on the 167

other hand, deals with articles or reviews that essentially report the result of an analysis 168

and it must infer which task and attributes were used to generate the result. Consider, for 169

example, the sentence “The Hyundai’s powerful engine leads to a lower fuel economy". 170

Here, it can be inferred that the words powerful and fuel-economy are referring to the horse- 171

power and MPG data attributes and the phrase leads to implies that the correlation task was 172

used to deduce this relationship. To make such inferences, we expand on the approaches 173

discussed above. 174

3. Preliminary Study: Can we learn from text on the web? 175

The internet is a rich source of textual information; however, a large portion of it is 176

irrelevant to our task of learning how people use visualization for analysis tasks. Before 177

devising a method to analyze texts for this purpose, we needed to assess whether online 178

documents contain relevant content that links tasks to attributes. Our initial exploration is 179

outlined below. 180

When exploring data, people usually ask questions about the data and we hypothe- 181

sized that we could uncover task-attribute connections from such queries. For instance, an 182

individual might ask, “what is the maximum horsepower of all cars?”. Here, we observe 183

that the task find extremum is represented by the word ‘maximum’ which is applied to the 184

attribute ‘horsepower’. Initially, we speculated that rather than conducting a structured 185

investigation to formulate such questions, we could extract them from the Internet. Typi- 186

cally, such queries are posted on question-answer forums like Question.com or within the 187

"People Also Asked" section of Google’s search results. Hence, we conducted a preliminary 188

study to determine the feasibility of systematically locating these questions and extracting 189

task-attribute relationships. 190

To start off, we selected two datasets for this study - cars [30], and NBA player data 191

[31]. These datasets were specifically chosen as they appeal to a large audience which 192

implied that a large number of questions would be available. We found that querying the 193

forums with the dataset name or topic along with one or more attributes returned a list of 194

Version May 13, 2024 submitted to Journal Not Specified 5 of 19

questions related to those attributes. A large portion of these questions could be answered 195

by conducting analytical tasks over the datasets. For example, a search for the term “Cars 196

weight acceleration” returned the question “How does weight affect acceleration?” which 197

can be answered by investigating the correlation between the “weight” and “acceleration” 198

attributes in the dataset. The tasks we consider here are the ten low-level analytic tasks 199

put forth by Amar et al. [4] which are used in multiple prior visualization recommenders. 200

These tasks are - Find Anomalies, Find Clusters, Find Correlation, Characterize Distribution, 201

Determine Range, Find Extremum, Order, Filter, Compute Derived Value, and Retrieve Value. 202

The results of our preliminary exploration encouraged us to build a collection of 203

questions that we could study and use to learn about task-attribute relationships in the 204

questions. We consequently collected 342 questions for our datasets. Next, two authors 205

independently coded these questions by identifying the task and associated attributes in 206

a question. As questions tend to be highly specific, each question was assigned a single 207

task and one or more attributes. Each coder worked independently and jointly resolved 208

any disagreements on attributes or tasks through discussions. After the coding process, we 209

were left with 255 questions that referred to an attribute and associated tasks; the remaining 210

questions were invalid. Invalid questions primarily focused on conceptual queries or 211

explanations of terminologies, such as questions about car components or basketball jargon. 212

These questions, like "What does horsepower mean?" or "What is a wing position in 213

basketball?", were not related to the focus of our work. Although they might aid users 214

in understanding the underlying concepts, they are not easily answered through data 215

analysis. 216

Analyzing the corpus of questions, we found that a majority (over 75%) of the ques- 217

tions revolved around finding extremums or retrieving values whereas fewer (just over 20%) 218

questions were categorized as finding clusters or characterizing a distribution and none were 219

related to finding anomalies. The results are shown as a percentage in Figure 1 (blue bars). 220

These questions tend to be posted by the general public who are non-experts or people look- 221

ing for elementary information and hence lack analytical depth. Furthermore, a comparison 222

with the types of questions a data analyst or visualization expert might pose revealed the 223

relatively straightforward nature of these queries; they mostly involved univariate analyses. 224

These findings prompted us to delve deeper, querying domain experts rather than 225

the general public to unearth questions akin to those posed by proficient analysts. But this 226

Figure 1. Here we show the results of our preliminary analysis of NL texts on the web. We report
the percentage of questions (from forums) and the percentage of sentences (from articles) that are
associated with the 10 low-level analytical tasks. We observe that articles tend to be more detailed
and focus on some of the more involved tasks such as finding clusters and anomalies. In both cases,
the Determine Range task was not present.

Version May 13, 2024 submitted to Journal Not Specified 6 of 19

does not mean that we arrived back at square one, i.e., conduct formal interviews with 227

domain experts to gain this knowledge. Rather, we could harness a wide array of possibly 228

large domain text available on the web. 229

Upon further exploration, we observed that data-driven news articles, review articles, 230

and enthusiast blogs posted on the internet contained detailed information gained from 231

data analysis. Authored primarily by domain experts or enthusiasts, these articles are 232

inherently rich in information and analytical in nature. For example, when analyzing the 233

car dataset, we could leverage comparison reviews from car magazines as the writers are 234

knowledgeable about the domain (cars) and they compare all aspects (attributes) of the 235

cars. To confirm the utility of such articles, we collected six articles related to the same 236

datasets - three car review articles and three NBA player profile articles. The sentences in 237

each article were coded following the same procedure used for the questions. The results 238

are also shown as a percentage in Figure 1 (orange bars). The results indicate that these 239

articles do in fact tend to refer to some of the more analytical tasks such as finding clusters 240

(approximately 10% of the task mentions) or finding anomalies (approximately 5% of the 241

task mentions) as compared to the questions found on forums. We also considered reviews 242

posted by consumers but encountered similar issues of naivety as with the questions 243

we had gathered. These findings encouraged us to develop an automated technique for 244

analyzing dataset-related articles, enabling the extraction of insights that inform us of 245

attribute significance and associated analytical tasks. 246

4. Design Requirements 247

The overall goal of our work is to recommend a set of visualizations that allow users 248

to explore important features in a tabular dataset informed by data attributes’ importance 249

and associated analytic tasks. Fundamental to our approach is the belief that analysis-type 250

articles related to the subject of the dataset can be useful in providing us with information 251

relating to an attribute’s importance and the analytic tasks associated with it.As mentioned, 252

this led us to build TaskFinder, a prototype system that leverages a combination of NLP 253

techniques and statistical methods to extract information from a dataset and related textual 254

documents and generate a list of recommended visualizations based on the importance of 255

data attributes and associated tasks. Based on observations made in our preliminary study, 256

we identified four main design requirements for TaskFinder: 257

R1 Identify all mentions of attributes in the article texts. First, TaskFinder should identify 258

all occurrences of words referencing a dataset attribute in the article text. This is not a 259

straightforward process as people tend to use different words to refer to the same attribute 260

(e.g. ‘mpg’ and ‘mileage’ can be used interchangeably). Also, a single word could refer to 261

the same attribute and task together, for example, ‘fastest’ refers to the find extremum task 262

applied to the ‘acceleration’ or ‘speed’ attribute. Thus TaskFinder must be able to identify 263

all words referring to tasks and attributes. 264

R2 In each sentence identify tasks and determine their relationship to attributes. After 265

determining which words refer to attributes, the next requirement of our system is to 266

determine if and how these words are associated with words referencing tasks in the same 267

sentence. That is, determine which tasks are applied to attributes. At times, sentences refer 268

to multiple tasks and attributes and our system must be able to identify which tasks are 269

applied to which attributes. For example, in the sentence “During our longest drive the 270

BMW gave us an average of 34.2 mpg.”, there are two tasks - the find extremum task referred 271

to by the word ‘longest’ which is applied to the word ‘drive’ and the compute derived value 272

task referred to by the word ‘average’ which is applied to the word ‘mpg’. TaskFinder must 273

be capable of making this distinction. 274

R3 Compute importance and rank. Completing the tasks above would result in multiple 275

attribute-task relationships being identified. Depending upon the number of attributes and 276

tasks mentioned, this list could be extremely long. Thus our system’s third requirement is 277

to rank the task attribute pairs and provide the user with the most important pairs first. 278

Version May 13, 2024 submitted to Journal Not Specified 7 of 19

Figure 2. The workflow of TaskFinder. First, the user provides TaskFinder with tabular data and a set
of domain-related documents. Next, the documents are cleaned with text pre-processing methods
while TaskFinder creates a representation for attributes in the data. Next, this representation is used
to extract information from the documents and create an association between attribute mentions and
tasks associated with them. These attribute-task pairs are then ranked by frequency of appearance in
documents as well as statistical properties of the data. Finally, a visualization is recommended for
each attribute-task pair and is provided to the user as a list of visualizations.

R4 Recommend appropriate visualizations for each attribute-task pair. Our main goal is 279

to provide users with appropriate visualizations based on the type of data and analytical 280

task to be performed. Thus our final requirement is to determine a mapping between 281

visualization tasks, attribute types, and visualizations. 282

5. TaskFinder 283

An overview of TaskFinder’s workflow is shown in Figure 2. The user starts by 284

providing TaskFinder with a tabular dataset and a set of related textual documents which we 285

will refer to as the corpus. It initially performs text pre-processing to clean the corpus. Next, 286

it extracts information from the dataset such as attribute labels and properties such as range 287

and categorical values to form an attribute representation. This representation is used to 288

identify references to attributes in the corpus (R1). Sentences containing attribute mentions 289

are analyzed to infer if one or more analytic tasks are associated with the attribute(s) 290

(R2). The frequency and order of appearance of attributes and associated analytic task 291

mentions are then used to generate a semantic ranking of the attributes or attribute pairs 292

and associated tasks. We perform statistical tests on the dataset to rule out certain tasks and 293

generate an interestingness score for each attribute or attribute pair. We then combine the 294

statistical ranking and semantic ranking to generate a combined ranking (R3). Finally, based 295

on the attribute types (numerical, nominal, or time) and associated tasks we recommend 296

appropriate visualizations and provide them to the user via a web-based interface shown 297

in Figure 4 (R4). Each of these processes are explained below. 298

5.1. Attribute Representation 299

Authors often use different words to refer to the same term or concept across text 300

documents on the web. Thus, it is likely that an attribute in the dataset is referred to by 301

multiple different terms or words in the textual documents. For example, the attribute 302

‘MPG’ in the cars dataset might be referred to as ‘fuel economy’ in the text. Additionally, 303

categorical attributes might be referred to by their categories instead of the attribute name. 304

For example, the word ‘USA’ may be used to refer to the attribute ‘Origin’ which reports 305

the country of manufacture for a car in the dataset. 306

In order to address this issue, we must represent each attribute in the dataset by a 307

collection of words instead of just the attribute label. We do this by representing each 308

attribute by its label and a set of synonyms that we generate automatically. We make use of 309

Datamuse [32] and NLTK [33] synsets to generate a list of attribute synonyms. We also add 310

Version May 13, 2024 submitted to Journal Not Specified 8 of 19

the categorical values of categorical attributes to the collection of synonyms that represent 311

the attribute. It should be noted that we do not add synonyms of categorical values. In 312

some cases, the synonyms are not applicable to the domain of the data thus we allow the 313

user to interactively deselect the irrelevant synonyms via the interface shown in Figure 314

3. We limit the number of synonyms to 30. We found this to be sufficiently large when 315

experimenting with a number of datasets retrieved from Kaggle. The user can edit attribute 316

types and attribute names which would lead to a new refined subset of synonyms. 317

5.2. Pre-processing 318

Text documents on the web do not conform to any particular standard or format and 319

may contain special characters and white spaces that can affect the performance of many 320

NLP tools. Thus, like many natural language processing systems, we must pre-process 321

the corpus before we actually analyze it. First, we remove any accented characters and 322

extra white spaces. Next, we perform coreference resolution which is the task of finding 323

all expressions that refer to the same entity across a set of sentences. We used Spacy’s [? 324

] implementation of the coreference resolution published by Clark and Manning [34] For 325

example, performing coreference resolution “The car’s fuel efficiency is 24.3mpg. It is the 326

best in its class.” replaces the first instance of “It” in the second sentence with “The car’s 327

fuel efficiency” and the second instance of “It” is replaced with “The car”. This helps our 328

system to detect that the extremum task (“best”) was applied to the fuel efficiency attribute 329

in the second sentence. Once we have pre-processed the corpus we move on to analyzing it 330

sentence by sentence. 331

5.3. Information Extraction 332

To recommend important attributes and their related tasks, TaskFinder must extract 333

useful information about them from the corpus. To achieve this, we make use of a combina- 334

tion of NLP techniques, specifically part-of-speech (POS) tagging, named entity recognition 335

(NER), dependency parsing, and word embeddings. These techniques are implemented by 336

a variety of NLP toolkits; for our work we make use of NLTK [33], Spacy [?], and Gensim 337

[35] with ConceptNet’s [36] word vectors. We discuss how we use these techniques to 338

identify references to data attributes in a sentence and how we infer tasks applied to the 339

attribute. Our discussion includes terminology common in the field of NLP, for a brief 340

description of these terms please refer to the NLP dictionary created by Wilson [37]. 341

5.3.1. Parsing Sentences 342

We start by iterating over each sentence in the pre-processed corpus and using Spacy, 343

we apply a series of NLP functions to them to extract features that can be used to detect 344

attributes and associated analytic tasks. We first perform POS tagging and extract the POS 345

tag (e.g. NN: Noun, JJ: Adjective, VB: Verb etc.) of each token in the sentence. Next, we 346

perform NER and extract all named entity tags (e.g. GPE: Countries, cities, states, PERSON: 347

Figure 3. TaskFinder’s interface allows the user to guide the attribute representation. Here users can
set the attribute types, edit attribute labels, and deselect irrelevant synonyms.

Version May 13, 2024 submitted to Journal Not Specified 9 of 19

names of people, PRODUCT: names of products, QUANTITY, TIME etc.) for words or 348

phrases in the sentence. Now, to understand the connection between words and phrases in 349

the sentence, we extract dependency relations between words as a dependency tree using 350

Spacy’s dependency parser. Finally, to identify certain phrases (e.g. “greater than”, “leads 351

to”) we construct N-grams (a collection of N successive items) from the sentence tokens. 352

5.3.2. Identifying Attribute Mentions 353

Once we have parsed the corpus, our first objective is to identify the data attribute 354

mentions. As discussed above, multiple different words in the corpus may refer to the same 355

attribute. For example nouns or noun phrases like ‘fuel economy’ or ‘fuel efficiency’ both 356

refer to the ‘MPG’ attribute. Additionally, the corpus may contain adverbs and adjectives 357

that may refer to attributes. For example, the words ‘fastest’ and ‘quickly’ refer to the 358

‘acceleration’ attribute. To identify these types of attribute mentions we make use of word 359

embeddings [38] [39] [40], POS (part-of-speech) tagging, and named entity recognition. 360

To identify attributes, we only consider N-grams with the noun, adjective, verb, and 361

adverb POS tags along with all tokens tagged as named entities in the sentence. Based 362

on the properties of word embeddings we expect that words related to a data attribute 363

appear closer together in the vector space. Thus, to determine if an N-gram or named entity 364

refers to an attribute we compute the semantic similarity score between every N-gram and 365

synonym and categorical value in the data attribute representation using their word vectors. 366

If the semantic similarity (absolute value between 0 and 1) is very high and above a preset 367

threshold, we count that word as a mention of the attribute. For nouns, we found that a 368

threshold of 0.45 has worked well to filter out irrelevant words. For adjectives, verbs, and 369

adverbs a lower threshold of 0.35 worked well as these words are more loosely connected 370

to attributes in the word embedding space. If a word is marked as an entity, we follow a 371

different strategy. For entities with the tag ORG, NORP, GPE, PERSON, PRODUCT, and 372

LANGUAGE we only test for semantic similarity with attributes that are categorical. We 373

also set a high threshold of 0.6 for the similarity. If an entity is tagged as the DATE or 374

TIME we test for the semantic similarity between the tag label i.e. ‘date’ or ‘time’ and the 375

synonyms of the attribute marked as time. As some unique words or phrases may not 376

be present in ConceptNet’s vocabulary, we also look for direct matches between N-grams 377

and values, words, or phrases in the attribute representations and assign all matches to 378

their respective attributes. It should be noted that we determined the threshold values by 379

experimenting with a set of 15 car review articles, 10 NBA player profiles, and 7 data-driven 380

news articles. 381

5.3.3. Identifying Tasks Applied to Attributes 382

The next objective is to identify and associate analytical task with the identified 383

attributes in the sentences. We analyze each sentence for mentions of any of the ten low- 384

level tasks put forth by Amar et al. [4]. In this stage, we make use of word embeddings, 385

POS tagging, named entity recognition, and dependency tree parsing. 386

These NLP techniques are used in conjunction with a set of keywords that refer to 387

each task defined by us. We constructed the set task keywords by having a pair of experts 388

(who are authors) refine a list of machine-generated synonyms. We generated the initial 389

list of synonyms by first using a synonym generator, Datamuse [32], to generate a set of 390

root synonyms. We then use these synonyms to retrieve the top 200 most related words to 391

the synonyms based on their distance in the ConceptNet word embedding space. Using 392

the number 200 proved to be sufficient to extract some closely related words as well as 393

different forms of the same word. For example, the root word ‘anomaly’ has the words 394

‘anomalies’, ‘anomalistic’, ‘anomalous’, and ‘anomalously’ associated with it. Following 395

this approach, we collected over 5,000 unique words and phrases that represent the ten 396

tasks, with each task having 450 to 750 keywords each. These keywords were then filtered 397

by two co-authors, with each author removing a word he or she found to misrepresent the 398

task. Each author worked independently to remove words. The results were then merged 399

Version May 13, 2024 submitted to Journal Not Specified 10 of 19

Table 1. This table lists the number of visualization guides that recommend using a chart for a particular task.

Tasks Charts
Bar Pie Line Density Box Dot Scatterplot Parallel Stacked Balloon Heatmap

Plot Plot Plot Coordinates Bar Plot

Distribution 11 0 0 8 7 1 8 0 0 0 1
Comparison 18 16 13 0 1 0 7 3 7 2 7
Relationship 14 0 16 0 0 0 16 3 3 2 7
Range 0 0 0 0 1 0 1 1 0 0 0

with conflicts (a word present in one author’s list but not the other’s) resolved through 400

discussions. We then only used the words that were common to both author lists resulting 401

in a total of 1,321 task keywords. 402

References to tasks occur in different manners in the text, thus we are using a different 403

combination of NLP techniques to identify each task. First, we identify references to the 404

correlation, anomalies, cluster, derived value, and distribution tasks following a procedure 405

similar to that used for detecting attribute mentions. Here, we compute the semantic 406

similarity score between every N-gram and attribute keyword using their word vectors. 407

Words with a similarity score of more than 0.4 are considered references to tasks. Next, we 408

make use of POS tagging to determine if a word is referring to the extremum and range tasks 409

or filter and rank. We consider extremum and range (the two extremes) as essentially being 410

the same task and group them into a single extremum. Similarly, we group the filter and 411

order tasks into a single filter task as they both require to compare values. Then N-grams 412

tagged as JJS or RBS i.e. superlatives (e.g. best, fastest, etc) and JJR or RBR i.e. comparatives 413

(eg. bigger, faster, etc) are assigned the extremum and filter, respectively. We also look for 414

direct matches between N-grams and task keywords as we did with the attributes. 415

Now that we identified all N-grams referring to data attributes and tasks, we must 416

determine the association between the attributes and tasks. We parse the dependency 417

tree using rules based on a combination of POS tags, dependency types(e.g. nsubj, amod), 418

and tree distance to identify associations between tasks and attributes. The dependency 419

parsing rules were defined based on the rules developed for NL4DV and the patterns 420

observed in the ∼300 sentences analyzed in our preliminary study. Finally, if an attribute 421

is mentioned in a sentence but none of the above tasks are associated with it, we default 422

to recommending the retrieve value task if it is a named entity otherwise we recommend 423

the distribution task. As a result of the process, we are left with attribute-task pairs such 424

as (Horsepower, Extremum) for univariate analysis or (MPG|Horsepower, Correlation) for 425

bivariate analysis. 426

5.4. Statistical Analysis 427

With the processes described above, we are able to extract attribute mentions along 428

with tasks associated with them based on the textual documents provided. However, these 429

documents are related to the domain of the data and not the dataset itself. Thus it may 430

be the case that a task recommended based on the analysis of the text is not statistically 431

interesting to perform. For example, the information extraction process may find that the 432

clustering task is strongly associated with an attribute. However, the attribute may not 433

have any clusters in the data. In this case, the strength of the association between the task 434

and the attribute must be reduced. 435

We generate statistics for four tasks ‘Anomalies’, ‘Clusters’, ‘Correlation’, and ‘Or- 436

dering’. We compute the number of outliers, clusters, sortedness (univariate only), and 437

correlation coefficient (bivariate only) across all attributes. For nominal or ordinal attributes 438

we compute these statistics over the counts of their values. While there are no statistics to 439

rank attributes for other tasks, we compute an interestingness score for attributes based on 440

general statistics - dispersion, variance, entropy, and skewness. 441

Version May 13, 2024 submitted to Journal Not Specified 11 of 19

5.5. Ranking Attributes and Associated Tasks 442

After parsing the user-provided text, we are left with a list of attribute-task pairs. This 443

list can be very long if the user provides a large number of texts. Additionally, the texts 444

are related to the domain of the dataset and not the dataset itself, thus the list may contain 445

task-attribute pairs that may not be relevant to the dataset. Thus in its final step, TaskFinder 446

must rank these task-attribute pairs based on some measure of importance. We compute 447

this importance measure based on three metrics - pair frequency, pair sequence, and the 448

statistical properties of the dataset. 449

• Frequency (Spf): This metric is the occurrence frequency of each extracted attribute- 450

task pair. If an attribute-task pair appears very often across the text it implies that the 451

article authors find it important. It should be noted that if a pair occurs twice within 452

the same sentence, we only count it once. We normalize the frequencies between 0 and 453

1 with 1 indicating the most frequent pair and use this value as the frequency metric. 454

• Sequence (Sps): This metric is computed by observing the occurrence sequence of 455

attribute-task pairs. If one task-attribute pair appears before another in a document 456

it implies that the writer may find it necessary to evaluate the first pair before the 457

second. If the user provides a corpus with multiple documents we first rank the pairs 458

within each document based on their occurrence sequence. We then combine these 459

rankings into an average ranked list. Finally, we normalize the ranks, with the highest 460

ranked item receiving a value of 1 and the lowest 0, and utilize these values as the 461

sequence metric. 462

• Statistical Relevance (Sst): This metric is based on the statistical properties of the 463

dataset itself and is independent of the text. By considering the statistical properties 464

of a dataset we can reduce the importance of tasks that may appear across the text 465

but might be irrelevant to the current dataset. Here we rank the attributes based on 466

the statistical tests. Then for correlation, clustering, and anomalies we use the ranks 467

generated by the respective statistical tests. For the remaining tasks, we use the 468

maximum rank of an attribute across all statistical tests. We normalize the ranks 469

between 0 (lowest ranked) and 1 (highest ranked) and utilize the values for the 470

statistical relevance metric. 471

The final importance measure is computed as a weighted average of three metrics 472

I = w1Spf + w2Sps + w3Sst . The default values of these weights are set to (0.5, 0.2, 0.3). 473

We chose to give a higher weightage to frequency as we believe that if an attribute or 474

attribute pair and associated task occurs across documents frequently then it is referred to 475

more frequently and thus is more important. Additionally, we discard any task-attribute 476

pair that has a statistical score of 0. An importance measure of 1 would indicate that the 477

task-attribute pair occurs at the start of a majority of the texts provided, it is also the most 478

frequent pair to appear across all texts, and the task is also statistically supported by the 479

data. 480

5.6. Mapping between Analytical Tasks and Visualizations 481

TaskFinder communicates the ranking generated as a list of visualizations or charts 482

that are appropriate for each attribute and task. We wish to support as many visualizations 483

as possible to ensure that we can accommodate people with varying levels of visualization 484

literacy. To achieve this, we studied various visualization guides produced by experts 485

and corporations in the field of visualization and generated a list of visualization and task 486

associations. 487

We collected and studied 19 visualization guides (see supplementary material for 488

the list of guides). From each guide, we extracted the various tasks discussed and the 489

visualizations suggested for each task along with the data constraints (data type and the 490

number of items). We then counted the number of times a visualization was suggested 491

for a particular task. The representation with the highest count would have the highest 492

Version May 13, 2024 submitted to Journal Not Specified 12 of 19

priority for the task while the representation with the lowest count would have the lowest 493

priority. The results are shown in Table 1. 494

Our study revealed that their authors refer to six different high-level tasks or functions 495

a chart can perform - distribution, comparisons, part-to-whole comparisons, relationships, changes 496

over time, and ranges. We grouped comparisons and part-to-whole comparisons into a single 497

parent task - comparisons - as the main difference between them is the type of data and not the 498

function itself. Similarly, we view changes over time as a special type of relationship task where 499

the relationship between an attribute’s value and time is investigated. Additionally, the ten 500

low-level tasks put forth by Amar et al. [4] can be mapped to these four high-level tasks. For 501

example, some guides we studied state that the low-level tasks correlation, clustering, and 502

finding anomalies tasks essentially require the user to investigate the relationship between 503

data items and can thus be mapped to relationships task. Similarly, the low-level tasks 504

Determine Range and Find Extremum can be mapped to the range task and the Order and 505

Filter low-level tasks can be mapped to the comparison high-level task. The Characterize 506

Distribution low-level task and distribution high-level task are identical. Finally, Compute 507

Derived Value and Retrieve Value were not referred to in the guides. For these tasks, we chose 508

to recommend the common charts - bar, line, and scatter plot. 509

5.7. Curating Visualizations 510

Using the mapping of low-level tasks to high-level tasks and task-chart mapping 511

we assign each ranked attribute-task pair a list of possible visualizations. We also set 512

limitations on which charts can be assigned to an attribute based on its data type (e.g. line 513

charts are only assigned to attributes with the time data type). At times, duplicates may 514

arise due to attributes being paired with different tasks that require share a recommended 515

visualization. These duplicates are merged and their importance measures are summed. 516

Then the attribute-task-chart pairs are re-ranked based on the new scores and presented to 517

the user. 518

The visualizations are presented as a list of cards via the interface shown in Figure 4. 519

We prioritize bivariate representations over univariate representations as they are capable 520

of providing the user with more information. Additionally, we give users the option 521

to deselect any analytical tasks they are not interested in or any visualization they are 522

unfamiliar with via a panel (left). 523

6. Demonstration 524

We demonstrate TaskFinder across two distinct domains characterized by varying 525

corpus sizes and quality. The two domains under consideration are automobiles and 526

sports – highly discussed topics across the internet. This demonstrates its ability to iden- 527

tify attributes and their corresponding tasks and how they inform recommendations for 528

visualization. 529

6.1. Car Comaprisons 530

For our first demonstration, we use the Cars [30] dataset retrieved from Kaggle. The 531

dataset has nine data attributes - Model, Horsepower, Cylinders, Displacement, Acceleration, 532

MPG, Weight, Year, and Origin. As discussed, TaskFinder requires the user to provide text 533

documents that discuss automobile analysis. Thus, we opted for car comparison reviews 534

from online magazines. Our rationale stems from the belief that such reviews are inherently 535

analytical in nature, as they systematically compare cars based on performance and features. 536

Thus, we selected at random a set of 15 car comparison reviews for demonstration. 537

With the dataset and accompanying textual documents selected, we proceeded to 538

upload them to TaskFinder, employing the interface in Figure 4. Our initial step involved 539

selecting attribute types and refining the synonym list, as outlined in Figure 3. For instance, 540

the Model attribute was set to the index type as it is unique and essentially a label for 541

each data item and won’t be considered during the recommendation phase. The attributes 542

Horsepower, Displacement, Acceleration, MPG, Weight were set to numerical while Cylinders 543

Version May 13, 2024 submitted to Journal Not Specified 13 of 19

Figure 4. The TaskFinder interface that takes in a dataset along with related textual documents via
inputs on the top left and produces a set of recommended visualizations that can be used to explore
the most important features of the data. Users can control the recommendations by selecting the tasks
they are interested in and the visualizations they are familiar with via the task and visualizations
panels on the left.

and Origin were set to ordinal and nominal. Notably, the Year attribute was set to the time 544

type, although, in this particular case, TaskFinder treated it as an ordinal attribute due 545

to the presence of multiple data points with the same year value. Next, we refined the 546

attribute synonyms. As the words Model, Weight, and Origin are generic, they yield a larger 547

set of synonyms with Model having the most - 17 synonyms. Given their generic nature, a 548

substantial number of these synonyms were irrelevant within the automotive context and 549

were consequently deselected. At this juncture, TaskFinder had the relevant input essential 550

for generating visualization recommendations to explore the dataset. 551

TaskFinder analyzed the input and returned a list of visualizations (Figure 4). The 552

textual articles contained sentences detailing various car specifications, coupled with 553

references to analytical tasks. For example, consider the sentence “The MG has the higher 554

power output – 170hp to the Tata’s 140 (torque is an identical 350Nm at 1,750rpm) – but its 555

wider, thinner-spread powerband means you have to shift less, and responses low down 556

are actually a bit better.” Here TaskFinder associated the term ‘higher’ with the filter task 557

and the noun phrase ‘power output’ with the horsepower attribute. It also finds that there is 558

a dependency (amod) between the two tokens thus inferring that the filter task was applied 559

to the horsepower attribute. It also identifies ‘170hp’ as an entity and associates it with the 560

horsepower attribute and the retrieve value task. 561

As explained in Section 5.6, filter is a low-level task that maps to the high-level com- 562

parison task. The first part of the sentence refers to this task – a comparison of two cars in 563

terms of their horsepower values. The second part is a relationship task, relating powerband 564

to shift frequency. As these attributes are not present in the dataset, the sentence part will 565

not be considered. TaskFinder systematically processes numerous sentences within the 566

corpus, counting the number of attributes and associated task occurrences. It also ranks 567

the attributes based on their order of appearance across the 15 articles. It then uses the 568

occurrence count and appearance order along with the dataset statistics to produce the 569

ranked list of visualizations shown in Figure 4. 570

Upon investigating the results we see that TaskFinder was able to recommend a list of 571

visualizations. We see that it recommended some very frequently paired attributes. For 572

example, it recommends investigating the relationships between MPG and Horsepower, 573

Horsepower and Cylinders, Horsepower and Acceleration, Horsepower and Weight, and Weight 574

Version May 13, 2024 submitted to Journal Not Specified 14 of 19

and Acceleration as these relations were frequently reported in the articles. We compared 575

these relationships to those investigated by the top 10 Kaggle notebooks (based on up- 576

votes received) associated with the dataset and observed the same relationships being 577

investigated by Kaggle users. However, we found that our system also recommended 578

relationships that are not usually investigated such as the relationship between year and 579

Horsepower, Cylinders, and MPG. The reason for this relationship being picked up was that 580

at times the articles referred to cars by their model name and year (e.g. “2019 Civic”) and 581

TaskFinder identified that these references to the year attribute were very frequent. 582

Overall, TaskFinder was able to use Car reviews to identify attributes and associated 583

tasks to recommend appropriate visualizations. Most recommendations aligned with the 584

attribute pairs and visualizations Kaggle users investigate in the same dataset. Thus with a 585

set of relevant documents, TaskFinder was able to produce recommendations on par with a 586

Kaggle analyst. 587

6.2. NBA Player Achievements 588

For our second demonstration, we focused on the sport domain. Specifically, apply 589

TaskFinder to an NBA dataset [31] retrieved from Kaggle which had nine attributes of inter- 590

est - minutes, points, rebounds, assists, steals, blocks, turnovers, fouls, age, height, position, 591

and weight. We also provided TaskFinder with articles describing the achievements of 592

historically great players sourced from the NBA website [41]. We believe that these articles 593

were analytical in nature as they focused on players’ career performances and compared 594

them to other great players. 595

Just as we did with the cars dataset, we moved on to set the data types for the attributes 596

and refined the recommended keyword set. The attributes were all numerical except for 597

the player’s name which we set to the index type. The attribute keywords TaskFinder 598

found were all relevant thus we had to expend minimal effort in refining the keywords set. 599

Having provided all the input necessary, TaskFinder analyzed the articles along with the 600

dataset and provided a list of recommended visualizations. 601

Upon investigating the results, we the list contained visualizations that were primarily 602

univariate. This is due to the fact that the articles are about “hall of fame” players and they 603

tend to mention the statistically outstanding player performances in isolation. For example, 604

sentences like “He also holds the all-time record for the highest field-goal percentage in a 605

five-game playoff series”, appear frequently in these articles. Here the Find Extremum task 606

or Range task was associated with the points attribute referred to by the word “field-goal”. 607

The system found some bivariate relationships as well through sentences such as “In 80 608

games, he averaged 34.0 points and 11.4 assists.” Here the Retrieve Value task was associated 609

with the combination of the attributes points and assists, the number of games was ignored 610

as it is not an attribute in the dataset. 611

Overall, associated the Find Extremum and Retrieve Value with the points, assists, and 612

rebounds attributes. While the position attribute was only associated with the Retrieve 613

Value task. Recommended bivariate attribute pairs included points and assists as well as 614

rebounds and blocks. When compared to the top 10 Kaggle notebooks (based on upvotes 615

received) associated with the dataset, the recommendations do not align well. A few Kaggle 616

users investigated extremums on all the dataset attributes but most split the dataset into 617

subsets based on position or NBA time periods (sets of seasons) to compare a subset of 618

players. 619

While the results are not inline with what a Kaggle analyst may analyze, they are 620

representative of what authors of the player profiles are interested in - a basic analysis 621

focused on each player’s best achievements. To get a more diverse set of task-attribute 622

associations we would have to find a different source of textual information. In the sports 623

domain today such kind of analyses are often reported in talk shows rather than articles. 624

Thus, applying our method to a transcription of the talk shows would be an avenue for 625

future investigation. 626

Version May 13, 2024 submitted to Journal Not Specified 15 of 19

(a) (b)

Figure 5. We report the distribution of the Kendall-Tau correlation values between 25 recommenda-
tions generated over a set of n articles for the cars dataset. We vary the value of n and report each
distribution above for each value of n for both (a) univariate and (b) bivariate recommendations.
From these distributions, we see that the correlations tend to stabilize when we have a total of 75
articles.

7. Evaluation - The Effect of Corpus Size 627

In this work, we hypothesize that if a corpus is large enough, we can extract the 628

ranking that informs us of what attributes and tasks people are generally interested in for a 629

particular data domain. Thus, we decided to study the effect of corpora size on the stability 630

of a ranking generated for a particular dataset. 631

For this study, we use the Cars [30] and NBA player [31] datasets. We collected a total 632

of 700 car comparison review articles and 20 NBA player profile articles. For each dataset, 633

we select n articles at random and compute the ranking. For each value of n we repeat 634

the process 25 times. We then compute the Kendall-Tau correlation between all rankings 635

and report the mean distance and standard deviation. We repeat this process for different 636

values of n. For the car dataset, we set the value of n to 1, 5, 10, 25, 50, 75, 100, and 125. 637

For the NBA dataset, we set the value of n to 1, 3, 5, 7, and 10. We then investigate the 638

distribution of correlation values to study at what corpora size the correlation stabilizes. 639

The results for the cars dataset are shown in Figure 5. Here we see that when we gener- 640

ate recommendations with just one article we have high variability along with a relatively 641

lower median correlation value indicating that we can get very different recommendations 642

if we base our analysis on just one article. As the number of articles increases, variability 643

decreases and the median correlation increases especially when making univariate recom- 644

mendations. We found that, for the cars dataset, the correlation between rankings stabilizes 645

once we had at least 75 car comparison reviews. 646

8. Discussion and Limitations 647

Impact of corpus quantity and quality. Our method relies on information from a 648

corpus to associate tasks with attributes and hence it is dependent upon the quality and 649

correctness of the corpus’ contents. Choosing a small number of texts, as in section 6.1, 650

may not recommend the most frequent attributes and analytical tasks in the domain. For 651

building general-purpose recommenders this is a limitation. On the other hand, curating 652

a specific set of texts to form a corpus can be beneficial. For example, texts produced by 653

a specific author or publication may extract a particular analysis style. Alternatively, an 654

organization may choose to only use internal documents for recommendations thereby 655

having some assurance of the corpus quality and analytical style. 656

We observed that our approach occasionally leads to trivial recommendations as it 657

gauges what is of interest to the domain audience, which is not necessarily interesting for 658

an analyst. For example, analyzing the NBA dataset led to a recommendation of simple 659

univariate charts that compared players or teams. These top-ranked charts typically did 660

not seek to explain certain relations, as bivariate charts often do. Thus in certain domains, 661

Version May 13, 2024 submitted to Journal Not Specified 16 of 19

textual documents might not contain all the interesting task-attribute associations. In 662

such cases, we may consider methods to inform the user of the quality of the corpus or 663

recommendations. For example, we can report a score based on the number of occurrences 664

of attributes and associated tasks in the corpus. Alternatively, we could have wildcard 665

recommendations [14] generated from underrepresented attributes or tasks. 666

Finally, we explored scientific domains like gene expression data, where attributes are 667

rarely discussed outside academia. However, we faced two main issues. First, there weren’t 668

many accessible texts on these topics. Second, the ones we found focused on complex statis- 669

tical analyses, not the kind of exploratory or basic analysis that TaskFinder was designed for. 670

Additionally, the method based on standard synonym generators lacked the sophistication 671

required to identify attribute references in text for scientific domains. Adapting TaskFinder 672

to such data domains will require extending its capabilities to recognize complex tasks and 673

specialized attribute names or references. 674

Reliance on the user to provide relevant documents. In its current form, TaskFinder 675

requires the user to provide the corpus from which attributes and associated tasks are 676

identified. While it removes the burden of picking the right attributes and analytics, 677

it places the new burden of curating a corpus and ensuring its quality. This makes it 678

less accessible. In the future, we would like to remove this burden from the user by 679

automatically retrieving such documents. To fill this void one can explore crowd-sourced or 680

web-crawler-based methods, to source analytical texts about various datasets or domains 681

and create a knowledge base. Alternatively, we can explore methods to gauge the quality 682

of user-provided corpora. In addition to the burden of finding articles, the user may need 683

to refine keyword lists used to represent attributes, especially in cases where some attribute 684

synonyms may not be applicable to the data domain. Finally, the recently emerging 685

commodity large language models, embodied by ChatGPT [42] and the like, could form 686

another source of textual information; prompts could be engineered in such a way that the 687

returned text would reflect a certain viewpoint or target audience. One might even be able 688

to capture some of the NLP analyses into the prompt. 689

Beyond Attributes and Low-Level Analytic Tasks. We focussed on the 10 low-level 690

tasks as they are frequently used by other recommender systems making this work easy 691

to pair with. However, our approach can be extended to other more complex tasks. Over 692

the course of our investigation of articles, we observed that texts contain much more 693

information that can be applied to the analysis of a dataset. One direction we explored was 694

the evaluation section of research papers. These did not contain low-level tasks but they did 695

mention attributes and statistical tests applied to them or chart types used to show them in 696

figures. Such information is useful for recommending statistical tests and visualizations 697

for scientific applications. Additionally, in our approach, we only recommend tasks for 698

an attribute. However, texts mention specific attributes that refer to a subset of the data, 699

for example, a specific car manufacturer or model, or a particular NBA season or player 700

position. This information can be leveraged to identify subsets in the data that may be of 701

interest to the analyst. 702

Augmenting other systems. We envision our approach of extracting attribute-task 703

associations from texts to be a part of a recommender system rather than a standalone task 704

recommender. With TaskFinder we paired our NLP extraction technique with a statistical 705

analysis model and a visualization recommendation based on a collection of visualization 706

guides. These components are interchangeable and it would be interesting to investigate 707

if other systems such as Kopol [43] or Data2Vis [18] can be augmented with information 708

gained form text and how they would perform. Our approach may also be of interest 709

to researchers working on authoring tools that recommend appropriate visualizations to 710

authors of articles. This is along the lines of the Kori system [44]. 711

9. Conclusions 712

In this work, we developed a technique to recommend appropriate visualization tasks 713

for a given dataset by extracting information from textual articles. To our knowledge, this 714

Version May 13, 2024 submitted to Journal Not Specified 17 of 19

is one of the first attempts at recommending visualization tasks specific to the domain of 715

the dataset. We demonstrated via a case study that our technique could identify mentions 716

of attributes and tasks in web-based texts and relate them to each other. Our approach 717

builds on well-established methods from the fields of NLP and visualization, so we did not 718

see an immediate need to perform a dedicated user study on our system; rather we show 719

that the quality of recommendations is bounded by the articles provided. In the future, we 720

intend to pair our work with newer NLP techniques and other recommendation strategies 721

to build a more robust recommender. 722

Author Contributions: Conceptualization: Darius Coelho, Steve Greenspan, Serge Mankovski, 723

Klaus Mueller, and Maria Velez-Rojas; methodology: Darius Coelho and Klaus Mueller; software, 724

investigation: Darius Coelho; formal analysis, validation, Bhavya Ghai and Arjun Krishna; writing - 725

original draft preparation, Darius Coelho; writing - review and editing: Darius Coelho and Klaus 726

Mueller, funding acquisition, Steve Greenspan and Maria Velez-Rojas. All authors have read and 727

agreed to the published version of the manuscript. 728

Funding: This research was funded in part by the NSF I/UCRC 1650499: Center for Visual and 729

Decision Informatics (CVDI) Site at SUNY Stony Brook, CA Technologies, a Broadcom Company, 730

USA, and NSF grant IIS 1527200. 731

Institutional Review Board Statement: Not applicable 732

Informed Consent Statement: Not applicable 733

Data Availability Statement: The text corpus employed for the studies as well as links to the 734

visualization cheatsheets studied are included in the supplementary material. 735

Conflicts of Interest: The authors declare no conflicts of interest. 736

Abbreviations 737

The following abbreviations are used in this manuscript: 738

739

NL Natural Language
NLI Natural Language Interface
NLP Natural Language Processing
POS Part-of-Speech

740

References 741

1. Mackinlay, J. Automating the Design of Graphical Presentations of Relational Information. ACM Transactions on Graphics 1986, 742

5, 110–141. 743

2. Roth, S.; Mattis, J.; Mesnar, X. Graphics and Natural Language As Components of Automatic Explanation. SIGCHI Bulletin 1988, 744

20, 76. 745

3. Casner, S. Task-analytic Approach to the Automated Design of Graphic Presentations. ACM Trans on Graphics 1991, 10, 111–151. 746

4. Amar, R.; Eagan, J.; Stasko, J. Low-Level Components of Analytic Activity in Information Visualization. In Proceedings of the 747

Proc. IEEE Symposium on Information Visualization, 2005, pp. 111–117. 748

5. Saket, B.; Endert, A.; Demiralp, C. Task-Based Effectiveness of Basic Visualizations. IEEE Transactions on Visualization and Computer 749

Graphics 2018, 25, 2505–2512. https://doi.org/10.1109/TVCG.2018.2829750. 750

6. Bertin, J.; Berg, W.J.; Wainer, H. Semiology of Graphics: Diagrams, Networks, Maps; University of Wisconsin Press Madison, 1983. 751

7. Cleveland, W.; McGill, R. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical 752

Methods. Journal American Statistical Association 1984, 79, 531–554. 753

8. Kerpedjiev, S.; Carenini, G.; Roth, S.F.; Moore, J.D. AutoBrief: A Multimedia Presentation System for Assisting Data Analysis. 754

Computer Standards & Interfaces 1997, 18, 583–593. 755

9. Wills, G.; Wilkinson, L. AutoVis: Automatic Visualization. Information Visualization 2010, 9, 47–69. 756

10. Vartak, M.; Huang, S.; Siddiqui, T.; Madden, S.; Parameswaran, A. Towards Visualization Recommendation Systems. SIGMOD 757

Record 2017, 45, 34–39. 758

11. Mackinlay, J.; Hanrahan, P.; Stolte, C. Show Me: Automatic Presentation for Visual Analysis. IEEE Transactions on Visualization 759

and Computer Graphics 2007, 13, 1137–1144. 760

12. Key, A.; Howe, B.; Perry, D.; Aragon, C. VizDeck: Self-organizing Dashboards for Visual Analytics. In Proceedings of the ACM 761

SIGMOD, 2012, pp. 681–684. 762

https://doi.org/10.1109/TVCG.2018.2829750

Version May 13, 2024 submitted to Journal Not Specified 18 of 19

13. Wongsuphasawat, K.; Moritz, D.; Anand, A.; Mackinlay, J.; Howe, B.; Heer, J. Voyager: Exploratory Analysis via Faceted 763

Browsing of Visualization Recommendations. IEEE Transactions on Visualization and Computer Graphics 2016, 22, 649–658. 764

14. Wongsuphasawat, K.; Qu, Z.; Moritz, D.; Chang, R.; Ouk, F.; Anand, A.; Mackinlay, J.; Howe, B.; Heer, J. Voyager 2: Augmenting 765

Visual Analysis with Partial View Specifications. In Proceedings of the CHI, 2017, pp. 2648–2659. 766

15. Lee, D.; Setlur, V.; Tory, M.; Karahalios, K.; Parameswaran, A. Deconstructing Categorization in Visualization Recommendation: 767

A Taxonomy and Comparative Study. IEEE Transactions on Visualization and Computer Graphics 2021. 768

16. Luo, Y.; Qin, X.; Tang, N.; Li, G.; Wang, X. DeepEye: Creating Good Data Visualizations by Keyword Search. In Proceedings of 769

the Proc. ACM SIGMOD, 2018, pp. 1733–1736. 770

17. Moritz, D.; Wang, C.; Nelson, G.L.; Lin, H.; Smith, A.M.; Howe, B.; Heer, J. Formalizing Visualization Design Knowledge 771

as Constraints: Actionable and Extensible Models in Draco. IEEE Transactions on Visualization and Computer Graphics 2019, 772

25, 438–448. 773

18. Dibia, V.; Demiralp, Ç. Data2vis: Automatic generation of data visualizations using sequence-to-sequence recurrent neural 774

networks. IEEE Computer Graphics & Applications 2019, 39, 33–46. 775

19. Hu, K.; Bakker, M.; Li, S.; Kraska, T.; Hidalgo, C. Vizml: A machine learning approach to visualization recommendation. In 776

Proceedings of the Proc. CHI, 2019, pp. 1–12. 777

20. Li, H.; Wang, Y.; Zhang, S.; Song, Y.; Qu, H. KG4Vis: A knowledge graph-based approach for visualization recommendation. 778

IEEE Trans. on Visualization and Computer Graphics 2021, 28, 195–205. 779

21. Wu, A.; Wang, Y.; Zhou, M.; He, X.; Zhang, H.; Qu, H.; Zhang, D. MultiVision: Designing Analytical Dashboards with Deep 780

Learning Based Recommendation. IEEE Transactions on Visualization and Computer Graphics 2021, 28, 162–172. 781

22. Berger, M.; McDonough, K.; Seversky, L.M. cite2vec: Citation-Driven Document Exploration via Word Embeddings. IEEE Trans. 782

on Visualization and Computer Graphics 2017, 23, 691–700. 783

23. Park, D.; Kim, S.; Lee, J.; Choo, J.; Diakopoulos, N.; Elmqvist, N. ConceptVector: Text Visual Analytics via Interactive Lexicon 784

Building Using Word Embedding. IEEE Transactions on Visualization and Computer Graphics 2018, 24, 361–370. 785

24. Mahmood, S.; Mueller, K. Taxonomizer: Interactive Construction of Fully Labeled Hierarchical Groupings from Attributes of 786

Multivariate Data. IEEE Trans. on Visualization and Computer Graphics 2019, pp. 1–1. https://doi.org/10.1109/TVCG.2019.2895642. 787

25. Cox, K.; Grinter, R.; Hibino, S.; Jagadeesan, L.; Mantilla, D. A multi-modal natural language interface to an information 788

visualization environment. International Journal of Speech Technology 2001, 4, 297–314. 789

26. Sun, Y.; Leigh, J.; Johnson, A.; Lee, S. Articulate: A Semi-Automated Model for Translating Natural Language Queries into 790

Meaningful Visualizations. In Proceedings of the Proc. Smart Graphics, 2010, p. 184–195. 791

27. Gao, T.; Dontcheva, M.; Adar, E.; Liu, Z.; Karahalios, K.G. DataTone: Managing Ambiguity in Natural Language Interfaces for 792

Data Visualization. In Proceedings of the Proc, UIST, 2015, p. 489–500. 793

28. Yu, B.; Silva, C.T. FlowSense: A Natural Language Interface for Visual Data Exploration within a Dataflow System. IEEE 794

Transactions on Visualization and Computer Graphics 2020, 26, 1–11. https://doi.org/10.1109/TVCG.2019.2934668. 795

29. Narechania, A.; Srinivasan, A.; Stasko, J. NL4DV: A Toolkit for Generating Analytic Specifications for Data Visualization from 796

Natural Language Queries. IEEE Transactions on Visualization and Computer Graphics 2021, 27, 369–379. https://doi.org/10.1109/ 797

TVCG.2020.3030378. 798

30. Cars Dataset. http://archive.ics.uci.edu/ml/datasets/Auto+MPG. Accessed: 2022-11-29. 799

31. NBA Player Dataset. https://www.kaggle.com/datasets/drgilermo/nba-players-stats. Accessed: 2022-11-29. 800

32. Datamuse. https://www.datamuse.com/. Accessed: 2022-11-29. 801

33. Loper, E.; Bird, S. NLTK: The Natural Language Toolkit. In Proceedings of the Workshop on Effective Tools and Methodologies 802

for Teaching Natural Language Processing and Computational Linguistics - Vol. 1, 2002, p. 63–70. 803

34. Clark, K.; Manning, C.D. Deep Reinforcement Learning for Mention-Ranking Coreference Models. In Proceedings of the 804

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 2256–2262. 805

35. Rehurek, R.; Sojka, P. Gensim–python framework for vector space modelling. NLP Centre, Faculty of Informatics, Masaryk 806

University, Brno, Czech Republic 2011, 3. 807

36. Speer, R.; Chin, J.; Havasi, C. Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the Proc. 808

AAAI, 2017. 809

37. Wilson, B. The Natural Language Processing Dictionary. http://www.cse.unsw.edu.au/~billw/nlpdict.html. Accessed: 810

2023-08-29. 811

38. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their 812

Compositionality. In Proceedings of the Proc. NIPS, 2013, pp. 3111–3119. 813

39. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the Empirical 814

Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–1543. 815

40. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Transactions of the Association 816

for Computational Linguistics 2017, 5, 135–146. 817

41. NBA Legends Profiles. https://www.nba.com/history/legends. Accessed: 2022-11-29. 818

42. OpenAI. ChatGPT (Feb 13 version) [Large language model]. https://chat.openai.com, 2023. 819

43. Saket, B.; Moritz, D.; Lin, H.; Dibia, V.; Demiralp, C.; Heer, J. Beyond heuristics: Learning visualization design. arXiv preprint 820

arXiv:1807.06641 2018. 821

https://doi.org/10.1109/TVCG.2019.2895642
https://doi.org/10.1109/TVCG.2019.2934668
https://doi.org/10.1109/TVCG.2020.3030378
https://doi.org/10.1109/TVCG.2020.3030378
https://doi.org/10.1109/TVCG.2020.3030378
http://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://www.kaggle.com/datasets/drgilermo/nba-players-stats
https://www.datamuse.com/
http://www.cse.unsw.edu.au/~billw/nlpdict.html
https://www.nba.com/history/legends
https://chat.openai.com

Version May 13, 2024 submitted to Journal Not Specified 19 of 19

44. Latif, S.; Zhou, Z.; Kim, Y.; Beck, F.; Kim, N.W. Kori: Interactive Synthesis of Text and Charts in Data Documents. IEEE transactions 822

on visualization and computer graphics 2022, 28, 184–194. 823

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 824

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 825

people or property resulting from any ideas, methods, instructions or products referred to in the content. 826

	Introduction
	Related Work
	Visualization Recommenders
	NLP in Visualization

	Preliminary Study: Can we learn from text on the web?
	Design Requirements
	TaskFinder
	Attribute Representation
	Pre-processing
	Information Extraction
	Parsing Sentences
	Identifying Attribute Mentions
	Identifying Tasks Applied to Attributes

	Statistical Analysis
	Ranking Attributes and Associated Tasks
	Mapping between Analytical Tasks and Visualizations
	Curating Visualizations

	Demonstration
	Car Comaprisons
	NBA Player Achievements

	Evaluation - The Effect of Corpus Size
	Discussion and Limitations
	Conclusions
	References

